Catalytic O- and S-Glycosylation of 1-Hydroxy Sugars

Junji Inanaga,*† Yasuo Yokoyama and Takeshi Hanamoto

Institute for Molecular Science, Myodaiji, Okazaki 444, Japan

O-Protected 1-hydroxy sugars are effectively cross-coupled with a variety of alcohols and thiols to give the corresponding glycosides by using methoxyacetic acid and ytterbium(\mathbb{H}) trifluoromethanesulfonate [Yb(OTf)₃] as catalytic promoters.

Although recent intensive studies on the development of new glycosyl donors have yielded a number of useful methods for glycoside synthesis, rather little has been reported for the glycosylation of 1-hydroxy sugars with free alcohols.¹ Our recent finding² that some heavy-lanthanide trifluoromethane-sulfonates such as Yb(OTf)₃³ can catalyse the glycosylation of 1-*O*-methoxyacetyl sugars⁴ prompted us to examine the possibility of the cross-coupling of 1-hydroxy sugars with alcohols in the presence of a catalytic amount of methoxyacetic acid and Yb(OTf)₃ (Scheme 1).

When a mixture of 2,3,4,6-tetra-O-benzyl- α -D-glucopyranose **1** and octan-1-ol was stirred with methoxyacetic acid and Yb(OTf)₃ (30 mol% each) at 53 °C for 8 h in various solvents, the corresponding octyl glucopyranoside was isolated in 97% (1,2-dichloroethane), 89% (toluene), 84% (acetonitrile) and 45% (tetrahydrofuran) yield, respectively. The amount of promoters could be reduced to 10 mol% each without a notable decrease in the yield under similar conditions (96%; 53 °C, 8 h). Although the glycosylation was effected by an even smaller amount of promoters was absent.

In Table 1 are summarized the results of the catalytic glycosylation of **1** and an anomeric mixture of 2,3,5-tri-*O*-

† Present address: Institute for Fundamental Research of Organic Chemistry, Kyushu University, Hakozaki, Fukuoka 812, Japan.

[‡] For instance, 1 mol% of promoters gave rise to 40% completion of the glycosylation after 8 h stirring at 53 °C in 1,2-dichloroethane.

benzyl-D-ribofuranoses 2 with various types of glycosyl acceptors. The reactions proceeded smoothly especially when liberated water in the reaction mixture was azeotropically removed by refluxing the solvent through a column of molecular sieves 4 Å (condition B).⁵§ Thus, a variety of

Table 1 Catalytic glycosylation of 1-hydroxy sugars^a

Entry	1-OH sugar	Acceptor	Con- ditions ^b t/h		Yield ^c (%)	α : β Ratio ^d
1	1	Octan-1-ol	Α	20	99	62:38
2	1	Octan-1-ol	В	3	99	78:22
3	1	3	Ae	36	85	48:52
4	1	4	В	4	99	75:25
5	1	Cyclohexanol	в	3	99	68:32
6	1	Cholesterol	В	4	99	67:33
7	1	5	Ae	36	81	40:60
8	1	6	в	5	72	82:18
9	1	Thiophenol	в	2	99	63:37
10	1	1-Octanethiol	В	3	99	79:21
11	2	Octan-1-ol	В	1.5	99	8:92
12	2	3β-Cholestanol	В	2	98	4:96
13	2	4	В	5	92	βonly
14	2	Thiophenol	В	1.5	96	25:75

^{*a*} The reactions were carried out by use of 1.2 equiv. of the acceptor to the 1-OH sugar in the presence of methoxyacetic acid and $Yb(OTf)_3$ (10 mol% each) unless otherwise stated. ^{*b*} A: 1,2-dichloroethane, 53 °C. B: dichloromethane, reflux, molecular sieves 4 Å (see the text). ^{*c*} Isolated yield. ^{*d*} Determined by ¹H NMR (270 MHz) analysis. ^{*e*} Methoxyacetic acid and Yb(OTf)₃ (30 mol% each) were used.

§ Typical procedure (entry 2): a mixture of 1 (540 mg, 1 mmol), octan-1-ol (189 μ l, 1.2 mmol), methoxyacetic acid (7.7 μ l, 0.1 mmol) and Yb(OTf)₃ (62 mg, 0.1 mmol) in dichloromethane (40 ml) was refluxed for 3 h under argon through a column of activated moelcular sieves 4 Å (*ca.* 28 g).

glycosides including disaccharides, 6-bromo-2-naphthyl glycoside and thioglycosides were prepared in good to excellent yields. The perfect stereoselection observed in the glycosylation of 2 (entry 13) should also be noted.

The mechanism of the present catalytic glycosylation is under investigation.

Received, 9th March 1993; Com. 3/01387A

References

- For recent works in this area, see: T. Mukaiyama and S. Suda, *Chem. Lett.*, 1990, 1143; 1991, 431; T. Mukaiyama, K. Matsubara and S. Suda, *Chem. Lett.*, 1991, 981.
 J. Inanaga, Y. Yokoyama and T. Hanamoto, *Tetrahedron Lett.*, 1993 34, 2791.
 J. H. Barbara, V. T. Sanzing, T. M. Balan hanamoto, *C. V. Linguetta*, 2010, 2011.
- J. H. Forsberg, V. T. Spaziano, T. M. Balasubramanian, G. K. Liu, S. A. Kinsley, C. A. Duckworth, J. J. Poteruca, P. S. Brown and J. L. Miller, J. Org. Chem., 1987, 52, 1017.
 J. Inanaga, Y. Yokoyama and T. Hanamoto, Chem. Express, 1993, Computer Science Sciene
- 8, 165.
- 5 For a similar technique or apparatus, see: M. Nishizawa, Y. Kan and H. Yamada, Tetrahedron Lett., 1988, 29, 4597.